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A lightweight convolution neural network based on joint 
features for Remote Sensing scene image classification
Cuiping Shia, Xinlei Zhangb, Liguo Wangc and Zhan Jinb

aCollege of Information Engineering, Huzhou University, Huzhou, China; bCollege of Electronic and 
Communication Engineering, Qiqihar University, Qiqihar, China; cCollege of Information and 
Communication Engineering, Dalian Nationalities University, Dalian, China

ABSTRACT
Unlike natural images, remote sensing scene images usually con
tain one scene label and many object labels, and many object labels 
are arranged dispersedly, which brings great difficulties to feature 
extraction of scene label. To accurately identify scene labels from 
remote sensing scene images with multiple object labels, it is 
important to fully understand the global context of the image. In 
order to solve the challenges of multi-label scene images and 
improve the classification performance, a global context feature 
extraction module is proposed in this paper. The module combines 
the semantics information of different regions through a global 
pooling and three different scale sub-regions pooling, which 
makes the module have stronger ability of global feature represen
tation. In addition, in order to fully understand the semantic con
tent of remote sensing images, a three branch joint feature 
extraction module is constructed, which consists of the global 
context feature module, 3 × 3 convolution branch and identity 
branch are fused. Finally, a lightweight convolution neural network 
based on joint features (LCNN-JF) is constructed using traditional 
convolution, depthwise separable convolution, joint feature extrac
tion module and classifier for remote sensing scene image classifi
cation. A series of experimental results on four datasets, UCM, AID, 
RSSCN and NWPU, demonstrate that the proposed method has 
better feature representation ability and can achieve better classi
fication of remote sensing scene images.
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1. Introduction

With the development of remote-sensing satellite technology, the resolution of remote 
sensing images that can be used for research has been significantly improved. At present, 
high-resolution remote sensing images have been used in various fields, such as ground 
target recognition and detection (Han et al. 2015), urban mapping (Hua, Mou, and Zhu  
2020), natural disaster damage assessment (Liang et al. 2020), land use (Hua, Mou, and 
Zhu 2019; Wang, Xiong, and Ning 2019), and so on. However, high-resolution remote 
sensing scene images have more complex spatial structure, and usually a scene label 
contains multiple object labels. The scene label refers to the category of the whole remote 
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sensing scene image. Object labels are labels for multiple objects contained in this scene 
image. It is difficult to understand the semantic content of scene images using local 
features alone. As shown in Figure 1(a), in addition to the bridge scene label, there are 
many object labels such as ‘islands’, ‘rivers’, and so on. In Figure 1(b), in addition to 
intersection scene labels, there are many object labels such as ‘factory’ and ‘highway’. 
Multiple object labels in remote sensing scene images pose a challenge to correct 
recognition of scene labels.

In order to improve the performance of remote sensing scene image classification, 
many methods have been proposed by researchers. In the early days of image classifica
tion, feature extraction mainly relied on handmade feature descriptors. For example, Tian 
et al. (Tan et al. 2017) computed a low-rank constraint coefficient matrix using the low- 
rank representation in the image feature space, then uses the coefficient matrix to define 
the features and capture the global relationship between the images. Zhou et al. (Zhou 
et al. 2012) proposed a multi-label learning framework, in which each sample image is 
described by multiple labels, which can more fully represent complex scene images with 
multiple semantics. Wu et al. (Wu et al. 2019) proposed a framework for target detection 
of remote sensing images, which integrates feature extraction of channels, fast image 
pyramid matching and feature learning strategies. However, these hand-made feature 
representation methods have poor feature extraction ability, making it difficult to express 
the overall and advanced semantic features of remote sensing scene images. Using the 
handmade feature descriptor method to classify remote sensing scene images with rich 
spatial structure is not only a heavy task, but also a lack of adaptability and flexibility for 
different scenes, which results in insufficient classification performance and makes it 
difficult to meet the practical application of remote sensing scene classification.

In order to address the shortcomings of traditional feature extraction methods, 
machine learning-based feature extraction methods are gradually being widely used. 
In recent years, deep learning-based methods have become very popular, which are 
methods based on artificial neural networks for feature learning of input data. Among 
them, convolution neural network (CNN) is the most commonly used method in image 
classification tasks. In recent years, more convolution neural networks, such as VGG 
(Simonyan and Zisserman 2015), AlexNet (Krizhevsky, Sutskever, and Hinton 2017), 
ResNet (He et al. 2016), and MobleNet (Howard et al. 2017), which can learn more 
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Figure 1. The complex spatial structure diagram of remote sensing scene image. Scene labels (shown 
in blue) and object labels (shown in red). (a) scene label: bridge, object label: forest, river, island, 
farmland, residential. (b) scene labels: intersection, object labels:parking,industrial, sparse_residential 
and runway.

6616 C. SHI ET AL.



representative and distinctive features automatically, have been used in various fields 
of computer vision, such as target detection (Mahanand et al. 2021), semantic seg
mentation (Tasar, Tarabalka, and Alliez 2019), and scene classification (Wang et al.  
2021). Due to the excellent performance of convolution neural network in computer 
vision, a large number of algorithms based on convolution neural network for remote 
sensing scene image classification have been proposed. For example, to explore 
semantic label information, Lu et al. (Lu, Sun, and Zheng 2019) proposed an end-to- 
end feature aggregation convolution neural network to learn the semantic information 
of remote sensing scene images using supervised convolution feature coding module 
and asymptotic aggregation strategy. This method integrates feature learning, feature 
aggregation and classifier into a unified end-to-end joint training framework, effec
tively improving the classification performance of convolution neural networks. He 
et al. (He et al. 2020) proposed a skip-layer connection covariance network based on 
convolution neural network. This method embeds the skip-layer connection module 
and the covariance pooling module into the traditional convolution neural network, 
effectively resolves the differences in the image data collection of remote sensing 
scenes, and can extract more representative features. To improve the performance of 
image classification for remote sensing scenes, Cheng et al. (Cheng et al. 2018) 
proposed a learning method of discriminant convolution neural network, which trains 
by optimizing a new discriminant objective function to make the image maps of 
different categories as far as possible and the image maps of the same scene category 
as close as possible. Cheng et al. (Cheng et al. 2018) applied convolution neural 
network to the classification of hyperspectral images and proposed a measurement- 
based learning framework to learn the spectral spatial characteristics of hyperspectral 
images. Jing et al. (Jing et al. 2020) proposed a method of image classification for 
remote sensing scene based on neural structure search. In addition, to improve the 
efficiency of neural search, an edge normalization technology was introduced into the 
algorithm. These methods are some creative improvement methods for remote sen
sing scene image classification. Most of them improve the classification performance 
of remote sensing scene images by only improving the network framework design and 
do not consider the characteristics of the image itself enough.

For remote sensing scene image classification, global context information is of great 
significance to improve the classification performance. In order to obtain global context 
features, most methods obtain global context features by using global average pooling or 
large convolution kernel. For example, the PoolNet (Liu et al. 2019) method used 
a modified pyramid pooling module to extract global context information. Wang et al. 
(Wang et al. 2018) used the convolution of three consecutive holes with different hole 
rates to enhance the receptive field of the network. Different from the existing methods, 
we use the four layer pyramid structure to extract the global features of remote sensing 
images at different scales. In addition, in order to improve the classification performance 
of remote sensing scene images, local features are added to the global feature extraction 
module, and identity connection is added to retain more shallow information. The shallow 
feature extraction module is composed of traditional convolution with convolution kernel 
size 3 × 3 and depthwise separable convolution with convolution kernel size 3 × 3. On the 
basis of the shallow feature extraction module, a joint feature extraction module is added 
to form the deep feature extraction module. Finally, a modular remote sensing scene 
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image classification method is formed by combining the shallow feature extraction 
module and the deep feature extraction module.

In conclusion, the contributions of this paper can be summarized as the following three 
points.

(1) In order to obtain the global features of remote sensing images, we propose a four 
layer pyramid structure of global context feature extraction module. The module 
consists of four parts. The first part is to extract the global context information 
through average pooling and max pooling and to extract the global information of 
different scales by changing the size and step of the pooling kernel; the second part 
uses 1 × 1 convolution to preserve the weights of the global features extracted in 
the first part at different scales, while reducing the number of channels for the 
features; the third part is the upsampling layer, which restores the features of 
different scales to the same size as the original output through bilinear interpola
tion; the fourth part is the fusion layer, which fuses the global features of four 
different scales with the original input features to output the final global features.

(2) In order to further improve the classification performance, local features are added 
to the global feature extraction module to form a joint feature extraction module. 
This combination of local and global features can make the final prediction results 
more reliable. The joint feature extraction module consists of three branches, 
branch 2 is the global feature extraction module, and branch 3 is the local feature 
obtained by 3 × 3 convolution. To reduce the loss of shallow information during 
feature extraction, an identity branch is added.

(3) A modular remote sensing scene image classification method is presented. The 
method consists of shallow feature extraction module and deep feature extraction 
module. Shallow feature extraction module is composed of 3 × 3 traditional con
volution and 3 × 3 depthwise separable convolution. The deep feature extraction 
module is composed of shallow module and joint feature extraction module. 
A series of experiments show that the proposed method can provide better 
classification performance.

The rest of this paper is as follows. In Section 2, the related work of global feature and 
multiscale feature networks is introduced. In Section 3, the global context feature extrac
tion module, joint feature extraction module and lightweight convolutional neural net
work based on joint features (LCNN-JF) are introduced in detail. In Section 4, the proposed 
LCNN-JF method is compared with the advanced method. In Section 5, various visualiza
tion methods are used to discuss the performance of the proposed method. Section 6 is 
the conclusion of this paper.

2. Related works

2.1. Global features

To improve the perception field of the network, Liu et al. (Liu, Rabinovich, and Berg 2015) 
proposed ParseNet, which extracts the global context features of an image through global 
average pooling and fuses them with local features, which greatly improves the 
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effectiveness of classification. Cao et al (Cao et al. 2019) overcomes the computational 
overhead of the traditional global attention module, presents a simplified global atten
tion, and presents a GCNet by combining it with SEBlock. By capturing long-distance 
dependencies with simplified global self-attention, the method optimizes the ability of 
global context modelling while satisfying a relatively small amount of computations. The 
DeepLab network proposed by Chen et al. (Chen et al. 2017) uses four dilated convolution 
cascades to obtain global context information. Dilated convolution enlarges the field 
without increasing the number of parameters, and multiple dilated convolution cascades 
can achieve exponential growth of the field. To overcome the problem of effective weight 
reduction over long distances, a global average pooling layer is added after the last 
dilated convolution. Fu et al. (Fu et al. 2019) proposed a dual attention network, which 
uses dual attention to capture global context information to solve scene segmentation 
tasks. By introducing a self-attention mechanism to capture the spatial dependency 
between any two positions in the feature map, the global context information can be 
aggregated adaptively. In addition, channel attention is introduced to capture the chan
nel dependency between any two feature maps.

2.2. Multi-scale feature network

Convolutional neural network extracts the features of the target through layer by layer 
abstraction. Although high-level features contain rich semantic information, it is difficult 
to accurately store the position information of objects due to low resolution. On the 
contrary, although the semantic information of low-level features is less, due to the high 
resolution, it can accurately contain the object position information. By fusing high-level 
semantic information and low-level semantic information to form a multi-scale feature 
network structure, the classification accuracy can be effectively improved. Multi-scale 
network structure is divided into multi-scale input, multi-scale feature fusion and multi- 
scale output.

2.2.1. Multi-scale input network
Multi-scale input network is to use images of multiple scales as input and then fuse the 
results. For example, in the Multi-task Cascaded Convolutional Networks (MTCNN) algo
rithm proposed by Zhang et al. (Zhang et al. 2016). In order to detect faces at the same 
scale, the original image is scaled to different scales before entering the network training, 
so as to enhance the robustness of the network to faces of different scales.

2.2.2. Multi-scale fusion network
The multi-scale fusion network consists of parallel multi-branch and serial hierarchical 
connections. Parallel structures can acquire features of different receptive fields at the 
same level, while serial structures can fuse features of different abstract levels. The 
inception module, proposed by Szegedy et al. in GoogleNet (Szegedy et al. 2015), is 
used by 1 × 1 convolution, 3 × 3 convolution, 5 × 5 convolution and 3 × 3 max pooling of 
four parallel branches, and finally fusing the four branches. The Feature Pyramid Network 
(FPN) algorithm proposed by Lin (Lin et al. 2017) et al. utilizes both low-level high- 
resolution features and high-level semantic features, and uses serial hierarchical connec
tion method to fuse the features of different levels to achieve the prediction effect.
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2.2.3. Multi-scale feature output network
Multi-scale feature output is to forecast in different feature scales and fuse the results. Liu 
et al. (Liu et al. 2016) predicted feature maps of different scales. The low-level feature map 
has a larger size and smaller field to detect small targets. The high-level feature map is 
small in size and has a large field to detect large targets. The Single Stage Headless Face 
Detector (SSHFD) algorithm proposed by Najibi et al. (Najibi et al. 2017) splits into 
branches starting from a larger resolution feature map, and each branch separately 
predicts targets of different scales.

3. Methodology

3.1. Global context feature extraction module

Convolution neural network can not perceive all the information of the original 
image because there is a local connection between the convolution layer and the 
pooling layer in the convolution structure. The larger the value of neural network 
receptive field is, the larger the range of the original image it can contact, which 
means that it contains more global information. The smaller the value is, the more 
local the features it contains. Zhou et al. (Zhou et al. 2014) proposed that the actual 
receptive field of convolutional neural networks is much smaller than the theoretical 
receptive field, resulting in many networks not fully integrating important global 
context information.

It is a simple method to obtain the global information of features by increasing the 
receptive field of convolution, but increasing the receptive field will bring a lot of 
computation, which will reduce the running speed of the network and is not conducive 
to optimization. Global pooling is a better method to extract global context informa
tion, but in remote sensing scene images, the feature map extracted by convolution 
contains rich spatial information. Directly using global pooling to fuse features into 
a single vector will lose the spatial information of features, and it is difficult to obtain 
good classification performance. To solve this problem, we propose a hierarchical 
global context information extraction module that includes the relationships between 
different scales and different sub regions. The hierarchical global context information 
extraction module combines the global context information and the local context 
information of sub regions, which is more helpful to distinguish various categories. 
As shown in Figure 2, the hierarchical global context information extraction module is 
composed of four parts. The first group is the global context features for extracting 
input features, which are composed of average pooling and maximum pooling. 
Assuming that the input feature is U 2 R H�W �C , in group 1, the first level is the global 
context information generated by global pooling. Here, we use global pooling as 
global average pooling and global maximum pooling. Global average pooling takes 
the average value of all elements in the entire feature map and outputs it, so that more 
image background information can be retained. Maximum pooling is to take the 
maximum output of all elements in the entire feature map, discarding a large amount 
of redundant information in the network, and can retain more texture information of 
the image. Then, the output results of global average pooling and global maximum 
pooling are fused to obtain. This process can be expressed as
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In formula (1), 1
<j j

P

ðp;qÞ2<
upq represents the global average pooled output result, and   

max
ðp;qÞ2<

upq represents the global max pooled output result. <j j represents the number 

of all elements in the feature map, and upq represents the element at ðp; qÞin the 
rectangular area <.

The remaining three levels use pooled kernels with sizes of 2 × 2, 4 × 4 and 8 × 8 to 
extract the features of different sub regions, and the pooled outputs arey2 2 R

H
2;

W
2 ;C , 

y3 2 R
H
4;

W
4 ;Cand y4 2 R

H
8;

W
8 ;C , respectively. The local informationyiof each sub region can 

be expressed as 

In formula (2), 1
<mnj j

P

ðp;qÞ2<mn

upq represents the output result of average pooling, and   

max
ðp;qÞ2<mn

upq represents the output result of max pooling. <mn refers to the rectangular 

area with the size of m� n, which is 2 × 2, 4 × 4 and 8 × 8 respectively. upq represents 
the element at ðp; qÞ in rectangular area <mn, and <mnj j represents the number of 
elements in rectangular area <mn.

Group 2 uses 1 × 1 convolution to maintain the weight with global context character
istics obtained by group 1. Specifically, in each level, the different scale features yi with 
global context information obtained after pooling and fusion are passed through 1 × 1 to 
maintain the weight and reduce the channel dimension of multi-level features. After 1 × 1 

Figure 2. Global context feature module.
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convolution, we use batch normalization to speed up network training and convergence, 
and then useRuleactivation function to carry out network non-linearity and improve the 

expression ability of the network. The obtained resultst1 2 R 1�1�C=4,t2 2 R H=2�W=2�C=4, 

t3 2 R H=4�W=4�C=4, t4 2 R H=8�W=8�C=4 can be expressed as: 

In formula (3), w 2 R 1�1�C=4 , κ represent batch normalization, and � repre
sentsReluactivation function.

In group 3, the 1 × 1 convoluted sample of low-dimensional features is restored to the 
size of the original feature map. Specifically, bi-linear interpolation is used to up-sample 
the low-dimensional feature ti generated by each level, and the features after sampling 
are ri, ti !

upsamping
ri 2 R H�W�C , upsamping representing the up-sampling operation.

The fourth group is the feature fusion stage. The original feature U 2 R H�W�C and the 
features r1, r2, r3, r4 obtained at four levels are spliced to obtain V ¼ UΘr1Θr2Θr3Θr4, where 
Θ represents the channel concatenate operation. Finally, all the context information 
obtained from the channel concatenate is integrated by 1 × 1 convolution to obtain the 
final global feature. Through different pyramid levels, different scale features are 
obtained, and then these features are aggregated. Therefore, different scale context 
information is aggregated.

3.2. Joint feature extraction module

The joint feature extraction module combines global context features and local features, 
which is more helpful to distinguish various categories. As shown in Figure 3, this module 
is composed of three branches, branch 1 is the identity branch, branch 2 is the global 
context feature module (GCFM) branch, and branch 3 is the local feature extraction 
branch. Suppose the input feature map is U 2 R W �H�C . Specifically, branch 2 uses the 

Figure 3. Joint feature extraction module.
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pyramid pooling module with four levels to extract the extracted feature 
V ¼ UΘr1Θr2Θr3Θr4, where r1, r2, r3, r4 are the hierarchical global context information 
extracted by the pyramid pooling module with four levels, which integrates the relation
ships between different scales and different sub regions, which is very important for 
understanding the semantic information of remote sensing scene images. Branch 3 is 
a local feature extracted using a convolution operation. Specifically, first, the input 
features are convoluted, and then, in order to speed up the convergence of the network, 
batch normalization is used after 3 × 3 convolution. Then, the modified linear unit (relu) 
activation function is used to perform nonlinear transformation on the features after 
batch normalization, so as to improve the representation ability of the extracted local 
features. The specific process is

In formula (4), T represents the local characteristics of the output of branch 
3,w 2 R 1�1�C ,κrepresent batch normalization, and�represents the Relu activation 
function.

While extracting local and global features, branch 2 and branch 3 will inevitably lose 
some features. Here, branch 1 uses the identity branch to compensate the lost features, 
which also reduces the problem of performance degradation caused by network deepen
ing. Finally, branch 1, branch 2 and branch 3 are fused to obtain the final joint feature 
R W�H�C  F ¼ V � T � U, where�represents feature fusion.

3.3. Lightweight convolutional neural network based on joint features(LCNN-JF)

In order to find a lightweight convolutional neural network with balanced classi
fication accuracy and running speed, we use a series of convolution operations, 
joint feature extraction module and classifier to form a lightweight convolutional 
neural network based on joint features. As shown in Figure 4, the overall structure 
of the proposed LCNN-JF method consists of six parts. Groups 1 to 5 extract the 

Group 1
Group 2

Group 3

Group 4Group 5

Group 6

Conv Dsc Max-Pooling JFEM

Figure 4. The overall structure diagram of the proposed LCNN-JF method.
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features of remote sensing scene images. Groups 1 and 2 extract the shallow 
features of remote sensing scene images by using the shallow feature extraction 
module composed of traditional convolution (Conv) and depthwise separable con
volution (Dssc). Groups 3, 4 and 5 add a joint feature extraction module (JFEM) to 
form a deep feature extraction module based on the shallow feature extraction 
module, which is used to extract the deeper complex features of remote sensing 
scene images. Further strengthen feature representation. Specifically, assuming that 
the input is X 2 R W �H�C , the feature ~Fð2Þα is obtained after the first and second 

groups of shallow feature extraction modules, and the calculation process of ~Fð2Þα is

In formulas (5) - (7), ~F0
α ¼ X , wðiÞconv 2 R H0�W 0�iC0 represent the traditional convolu

tion of Group i, where H0 and W 0 represent the height and width of the convolu
tion kernel respectively, iC0represents the number of channels of the convolution 
kernel, from group 1 to group 2, the number of channels of the output feature 
increases twice, H

i and W
i represent the height and width of the output feature 

respectively, from group 1 to group 2, the spatial size of the output feature is 

reduced to half of the original, wðiÞconv 2 R H�W�iC0 represents the depthwise separable 
convolution of group i, and Mmax poolð�Þ represents the max pool operation with 
pool kernel and pool step of 2. The depth feature extraction process from group 3 
to group 5 is 

In formula (8) and formula (9), Fð3Þconv ¼ Fð3Þdsc 2 R
W
4�

H
4�4C0 , Fð4Þconv ¼ Fð4Þdsc 2 R

W
16�

H
16�8C0 , 

Fð5Þconv ¼ Fð5Þdsc 2 R
W
64�

H
64�16C0 ; In formula (10), ~Fð3Þα 2 R

W
8�

H
8�4C0 , ~Fð4Þα 2 R

W
32�

H
32�8C0 , 

~Fð5Þα 2 R
W
64�

H
64�16C0 ; In formula (11), F̂ð3Þ 2 R

W
8�

H
8�4C0 , F̂ð4Þ 2 R

W
32�

H
32�8C0 , F̂ð5Þ 2 R

W
64�

H
64�16C0 ; In 

formula (12), ~Fð3Þβ 2 R
W
16�

H
16�4C0 , ~Fð4Þβ 2 R

W
32�

H
32�8C0 . Compared with the shallow feature extrac

tion module, the deep feature extraction module adds a joint feature extraction module 
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and a maximum pooling layer, as shown in formula (11) and formula (12), where Φð�Þ
represents the joint feature extraction module.

The sixth group is the classifier module, which is composed of global average pooling, 
full connection layer and softmax classifier. Suppose that the characteristic of group 5 
output is G ¼ g1; g2; . . . ; gi; . . . ; gN½ � 2 R N�W�H�C , where ; ; . . . ;½ � represents the cascade 
operation along the batch dimension, N represents the batch size of input data, and 
W;H; C represents the width, height and number of channels of input data respectively. 
The output result of the global average pooling layer is 
O ¼ o1; o2; . . . ; oi; . . . ; oN½ � 2 R N�C , so the processing process of "gi 2 R H�W�C by the 
global average pooling layer can be expressed as 

Using global average pooling can reduce the risk of over fitting in the process of model 
training. In addition, using the global average pooling layer before the full connection 
layer can reduce the destruction of feature space information. Then input the global 
average pooled output result oi 2 O to the full connection layer with the number of 
categories Z, and the output result is J j1; j2; . . . ; ji; . . . jZ½ �;FCðoiÞ. Finally, input the 
output result J of the full connection layer into the softmax function to obtain the output 
result Y ¼ y1; y2; . . . ; yi; . . . ; yZ½ �, then the output result yi of the softmax classifier can be 
expressed as 

In formula (14), J½i� represents the i-th element in J (index starts from 1).
In this paper, cross-loss entropy is used as the loss function. Assuming that 

K ¼ k1; k2; . . . ; ki; . . . ; kZ½ � represents the one-hot coding result of the input data, the 
loss function loss can be expressed as 

In formula (15), Z represents the number of scene categories, and yi represents the 
output result of softmax classifier.

4. Experimental results and analysis

4.1. Dataset settings

The SIRI-WHU remote-sensing image dataset (Zhao et al. 2016) was published by 
Wuhan University in 2016. The dataset contains 12 scene categories, with 200 images 
per scene category, 200 × 200 pixels per image, and 2 metres of spatial resolution. 
SIRI-WHU remote sensing image dataset resources come from Google Earth and 
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cover mainly urban areas in China. The WHU-RS19 (Xia et al. 2018) dataset is 
a remote sensing image dataset obtained from Google’s satellite imagery. The 
data, published by Wuhan University in 2011, contain 19 categories, each with 50 
images. AID Remote Sensing Image Dataset (Xia et al. 2017) is a challenging dataset 
that covers different seasonal scene images from China, Germany and the United 
States. The dataset consists of 30 categories of scene images, each of which contains 
220 to 420 images with pixels of 600 × 600 and spatial resolution ranging from 0.5 m 
to 0.8 m. The NWPU (Cheng, Han, and Lu 2017) remote sensing image dataset 
consists of images obtained by Google Satellite in different seasons, illumination 
and angles. The dataset contains 45 scene categories, including airplanes, airports, 
baseball courts, and basketball courts. Each scene category has 700 images, with 
each image having 256 × 256 pixels and a spatial resolution ranging from 0.2 m to 30  
m. The UC (Yang and Newsam 2010) dataset is a land-use image remote sensing 
dataset with 21 scene categories. The dataset contains 100 images in each scene 
category, each with a pixel size of 256 × 256 and a spatial resolution of 1 foot.

4.2. Setting of the Experiments

4.2.1. Dataset settings
Based on previous studies, the five datasets are divided into the following for a more 
effective evaluation of the proposed LCNN-JF method:

SIRI-WHU dataset:
(1) 50% of the images were randomly selected as training sets and the remaining 50% 

as test sets;
(2) 80% of the images were randomly selected as training sets and the remaining 20% 

as test sets;
WHU-RS19 dataset:
(1) 40% of the images are randomly selected as training sets and the remaining 60% as 

test sets;
(2) 60% of the images were randomly selected as training sets and the remaining 40% 

as test sets;
UC dataset:
80% of the images were randomly selected as training sets and the remaining 20% as 

test sets.
AID dataset:
(1) 20% of the images were randomly selected as training sets and the remaining 80% 

as test sets;
(2) 50% of the images were randomly selected as training sets and the remaining 50% 

as test sets;
NWPU dataset:
(1) 10% of the images are randomly selected as training sets and the remaining 90% as 

test sets;
(2) 20% of the images were randomly selected as training sets and the remaining 80% 

as test sets;
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4.2.2. Parameter settings
During the experiment, the initial learning rate was set to 0.01, the network was optimized 
using the momentum gradient descent function, and the momentum coefficient was set 
to 0.9, and the batch size was 16. In addition, the computer parameters used in the 
experiment are as follows:

CPU:AMD Ryzen 7 4800 H with Radeon Rraphics@2.90 GHz; RAM: 16 G; GPU: RTX2060; 
Solid state hard disk: 1T; Operating system: Window 11.

4.3. Experimental result

4.3.1. Overall performance of proposed methods
To validate the performance of the proposed method, the overall accuracy (OA), Kappa, 
F1, and confusion matrix were used as evaluation indicators. OA is the most commonly 
used indicator in classification tasks and represents the ratio between predicting the 
correct number of samples on all test sets and the total number of samples. Confusion 
matrix is a visual matrix used to represent the performance of the algorithm. Each column 
in the matrix represents the predicted value, each row represents the actual category, the 
diagonal value represents the probability that the current class is correctly classified, and 
the value outside the diagonal represents the probability that the corresponding class is 
incorrectly classified. The Kappa coefficient is calculated based on the confusion matrix 
and is an indicator for consistency testing, which is to check the consistency of the 
predicted and actual results of the model. The F1 score, also known as the balanced 
F score, is an indicator of model accuracy, which takes into account both the accuracy and 
recall of classification models. The experimental results are shown in Table 1. From 
Table 1, it can be seen that the proposed LCNN-JF method performs well in a variety of 
training scales for five datasets. Especially in SIRI-WHU dataset with 80% training ratio, 
WHU-RS19 with 60% training ratio and WHU-RS19 with 40% training ratio and UC dataset 
with 80% training ratio, the OA value of the proposed method is more than 99%. In 
addition, it has better performance on AID and NWPU datasets which are more difficult to 
train.

4.3.2. Experimental results on SIRI-WHU dataset
On the SIRI-WHU dataset, performance comparisons with the most advanced methods are 
shown in Table 2. From Table 2, it can be seen that the proposed LCNN-JF method 
achieves the best performance in both training scales. When the training proportion is 

Table 1. Experimental results of the proposed LCNN-JF method on five 
datasets.

Dataset OA Kappa F1

SIRI-WHU(50%) 97.28±0.25 98.06±0.26 98.28±0.72
SIRI-WHU(80%) 99.05±0.16 99.34±0.15 99.45±0.26
WHU-RS19(40%) 98.50±0.52 98.72±0.43 99.05±0.34
WHU-RS19(60%) 99.00±0.15 99.23±0.52 99.46±0.28
UC(80%) 99.52±0.25 98.96±0.02 99.50±0.39
AID(20%) 93.05±0.46 93.89±0.75 94.05±0.42
AID(50%) 96.65±0.15 97.12±0.28 96.92±0.49
NWPU(10%) 91.36±0.29 92.20±0.16 92.16±0.52
NWPU(20%) 93.25±0.16 93.69±0.34 94.05±0.45
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50%, the OA value of the proposed method is 97.28%, 1.32% higher than that of SE- 
MDPMNet (Zhang, Tang, and Zhao 2019). Under the training proportion of 80%, the 
classification accuracy reaches 99.05%, and 0.73% higher than that of SE-MDPMNet 
(Zhang, Zhang, and Wang 2019). Compared with the lightweight Fine-tune 
MobileNetV2 (Zhang, Tang, and Zhao 2019) method, the classification accuracy under 
two training scales is 2.51% and 3.29% higher than that of Fine-tune MobileNetV2 (Zhang, 
Zhang, and Wang 2019) method, although the number of parameters is slightly higher.

Figure 5 shows the confusion matrix of the proposed method on the SIRI-WHU dataset 
with a training scale of 80%. From Figure 5, it can be seen that, in addition to the two 
confusing scenarios of ‘pond’ and ‘water’, the proposed method can completely correct 
the classification of other scenario experiments in the dataset. Because ‘pond’ scenes and 
‘water’ scenes contain the same elements, it is easy to confuse when classifying. 
Nevertheless, the proposed method still performs well in classification.

Table 2. Comparisons of LCNN-JF and advanced methods on 50% and 80% SIRI- 
WHU datasets.

Method OA(50%) OA(80%) Parameter

DMTM 91.52 - -
Siamese ResNet50 95.75 97.50 -
Siamese AlexNet 83.25 88.96 -
Siamese VGG-16 94.50 97.30 -
Fine-tune MobileNetV2 95.77±0.16 96.21±0.31 3.5M
SE-MDPMNet 96.96±0.19 98.77±0.19 5.17M
LPCNN - 89.88 -
SICNN - 93.00 -
Pre-trained-AlexNet-SPP-SS - 95.07±1.09 -
SRSCNN 93.44 94.76 -
Proposed 97.28±0.25 99.05±0.16 5M

Figure 5. Confusion matrix of the proposed LCNN-JF method on a training scale of 80% SIRI-WHU 
dataset.
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4.3.3. Experimental results on WHU-RS19 dataset
The experimental comparison results of LCNN-JF and advanced methods proposed on 
WHU-RS19 dataset are shown in Table 3. From Table 3, we can see that the proposed 
method has the best performance advantage among all the comparison methods. When 
the training proportion was 40%, the classification accuracy was 5.93%, 0.59%, and 2.23% 
higher than the lightweight methods GoogLeNet (Xia et al. 2017), SE-MDPMNet (Zhang, 
Tang, and Zhao 2019) and Fine-tune MobileNetV2 (Zhang, Zhang, and Wang 2019, 
respectively. When the training proportion was 60%, the classification accuracy of the 
proposed method reached 98.52%, which was 4.8%, 0.54% and 1.37% higher than that of 
GoogLeNet; Xia et al. 2017), SE-MDPMNet (Zhang, Tang, and Zhao 2019) and Fine-tune 
MobileNetV2 (Zhang, Zhang, and Wang 2019), respectively. In particular, compared with 
the Fine-tune MobileNetV2 (Zhang, Tang, and Zhao 2019) method, the proposed method 
achieves a good trade-off between classification accuracy and model complexity.

The confusion matrix of the proposed LCNN-JF method on the WHU-RS19 dataset with 
60% training ratio is shown in Figure 6. From Figure 6, you can see that similar to the 
confusion results on the SIRI-WHU dataset, the classification errors are caused by the same 
spatial layout of the ‘port’ and ‘river’ scenes (such as water and forests in both the ‘port’ 
and ‘river’ scenes). However, the proposed method still performs well.

Table 3. Comparisons of the proposed LCNN-JF and advanced methods on 40% and 60% 
WHU-RS19 datasets.

Method OA(40%) OA(60%) Parameter

CaffeNet 95.11±1.20 96.24±0.56 60.97M
VGG-VD-16 95.44±0.60 96.05±0.91 138.36M
GoogLeNet 93.12±0.82 94.71±1.33 7M
Fine-tune MobileNetV2 96.82±0.35 98.14±0.33 3.5M
SE-MDPMNet 98.46±0.21 98.97±0.24 5.17M
DCA by addition - 98.70±0.22 -
Two-Stream Deep Fusion Framework 98.23±0.56 98.92±0.52 -
TEX-Net-LF 98.48±0.37 98.88±0.49 -
Proposed 98.50±0.52 99.01±0.15 5M

Figure 6. Confusion matrix of the proposed method on a training scale of 60% WHU-RS19 dataset.
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4.3.4. Experimental results on UCM dataset
The experimental results of the proposed LCNN-JF method and advanced method in the 
UCM dataset with a training ratio of 80% are shown in Table 4. From Table 4, it can be seen 
that the proposed method has a parameter of 5 M and a classification accuracy of 99.50. 
A good trade-off between classification accuracy and model complexity is achieved. 
Compared with the lightweight methods LCNN-BFF Method (Shi, Wang, and Wang  
2020), ABM-CNN (Shi, Zhao, and Wang 2021) and Skip-Connected CNN (He et al. 2020), 
the classification accuracy is improved by 0.23%, 0.02% and 1.48, respectively.

Table 4. Comparisons of LCNN-JF and advanced methods on UCM datasets 
with 80% training ratio.

Method OA Parameter

ResNet+WSPM-CRC 97.95 23M
ADFF 98.81±0.51 23M
LCNN-BFF Method 99.29±0.24 6.2M
VGG16 with MSCP 98.36±0.58 -
Gated Bidirectional+global feature Method 98.57±0.48 138M
Feature Aggregation CNN 98.81±0.24 130M
Skip-Connected CNN 98.04±0.23 6M
Discriminative CNN 98.93±0.10 130M
ABM-CNN 99.50±0.23 5.6M
VGG16-DF 98.97 130M
Scale-Free CNN 99.05±0.27 130M
VGG16+CapsNet 99.05±0.24 22M
Semi-Supervised Representation Learning 94.05±1.2 210M
Siamese CNN 94.29 -
Siamese ResNet50 with R.D 94.76 -
Bidirectional Adaptive Feature Fusion Method 95.48 130M
Multiscale CNN 96.66±0.90 60M
SAFF 97.02±0.78 15M
proposed 99.50±0.25 5M

Figure 7. Confusion matrix of the proposed method on a training scale of 80% UC dataset.
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The confusion matrix for the proposed method on a UCM dataset with 80% training 
ratio is shown in Figure 7. As we can see from Figure 7, the proposed method achieves 
complete recognition of almost all scenarios in a UCM dataset. The performance advan
tages of the proposed method are further verified.

4.3.5. Experimental results on WHU-RS19 dataset
The AID dataset is a more challenging dataset than the SIRI-WHU, WHU-RS19, and 
UC datasets. Referring to the classification of the dataset, we divided the propor
tion of samples used for training into 20% and 50%. The comparison results are 
shown in Table 5. From Table 5, it can be seen that the classification performance 
of the proposed method is better than that of the comparison method under both 
training scales. With a training proportion of 20%, the classification accuracy of the 
proposed method was 93.05%, which exceeded all the comparison methods, being 
1.69%, 1.66% and 0.78% higher than DDRL-AM method (Li et al. 2020), ResNet50 (Li 
et al. 2020) and ABM-CNN (Shi, Zhao, and Wang 2021), respectively. When the 
training proportion was 50%, the classification accuracy of the proposed method 
was 96.65%, which was 4.35%, 3.01%, 1.4% and 2.11% higher than Skip-Connected 
CNN (He et al. 2020), LCNN-BFF Method (Shi, Wang, and Wang 2020), DDRL-AM 
Method (Li et al. 2020) and ABM-CNN (Shi, Zhao, and Wang 2021), respectively. The 
performance advantages of the proposed method over the comparison method are 
further verified.

The confusion matrix of the proposed method on the AID dataset with a training 
proportion of 50% is shown in Figure 8. From Figure 8, it can be seen that the proposed 
method achieves a classification accuracy of more than 90% for all scenarios in AID 
dataset, and 100% for ‘viaduct’ scenarios. Of all the scenarios in this dataset, ’school’ 
and ‘industrial’ scenarios are the most likely to be confused. Similar building shapes and 
spatial structures in both scenarios result in lower classification accuracy for schools and 
factories, 91% and 94%, respectively.

Table 5. Comparisons of LCNN-JF and advanced methods on 20% and 50% AID datasets.
Method OA(20%) OA(50%) Parameter

Bidirectional Adaptive Feature Fusion Method - 93.56 130M
SAFF 90.25±0.29 93.83±0.28 15M
Skip-Connected CNN 91.10±0.15 93.30±0.13 6M
Gated Bidirectional Method 90.16±0.24 93.72±0.34 18M
Gated Bidirectional+global feature Method 92.20±0.23 95.48±0.12 138M
Feature Aggregation CNN - 95.45±0.11 130M
AlexNet with MSCP 88.99±0.38 92.36±0.21 -
VGG16 with MSCP 91.52±0.21 94.42±0.17 -
Discriminative CNN 85.62±0.10 94.47±0.12 60M
TSDFF - 91.8 -
LCNN-BFF Method 91.66±0.48 94.64±0.16 6.2M
ABM-CNN 93.27±0.22 95.54±0.13 5.6M
ResNet50 92.39±0.15 94.69±0.19 25.61M
DDRL-AM method 92.36±0.10 96.25±0.05 -
Fine-tuning Method 86.59±0.29 89.64±0.36 130M
Proposed 93.05±0.46 96.65±0.15 5M
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4.3.6. Experimental results on NWPU dataset
In the NWPU dataset, the experimental results of the proposed and advanced 
methods with 10% and 20% training ratio are shown in Table 6. From Table 6, it 
can be seen that the proposed method achieves remarkable performance in both 
training scales. When the training proportion is 10%, the proposed method is 
3.14% higher than Discriminative with VGG16 (Cheng et al. 2018), 3.37% higher 
than ABM-CNN (Shi, Zhao, and Wang 2021), and 5.21% higher than Fine-tuning 
Method (Xia et al. 2017). When the training proportion is 20%, the classification 
accuracy of the proposed method is 93.25%, which has better performance advan
tages than all the comparison methods. The classification accuracy of the proposed 

Figure 8. Confusion matrix of the proposed method on a training scale of 50% AID dataset.

Table 6. Comparisons of LCNN-JF and advanced methods on 10% and 20% NWPU 
datasets.

Method OA(10%) OA(20%) Parameter

SAFF 84.38±0.19 87.86±0.14 15M
Skip-Connected CNN 84.33±0.19 87.30±0.23 6M
Discriminative with AlexNet 85.56±0.20 87.24±0.12 130M
Discriminative with VGG16 89.22±0.50 91.89±0.22 130M
VGG16+CapsNet 85.05±0.13 89.18±0.14 130M
LCNN-BFF Method 86.53±0.15 91.73±0.17 6.2M
ABM-CNN 88.99±0.14 92.42±0.14 5.6M
Contourlet CNN 85.93±0.51 89.57±0.45 12.6M
ResNet50 86.23±0.41 88.93±0.12 25.61M
InceptionV3 85.46±0.33 87.75±0.43 45.37M
Fine-tuning Method 87.15±0.45 90.36±0.18 130M
AlexNet with MSCP 81.70±0.23 85.58±0.16 -
VGG16 with MSCP 85.33±0.17 88.93±0.14 -
Proposed 91.36±0.29 93.25±0.16 5M
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methods is 1.83%, 6.95% and 2.52% higher than that of the lightweight methods 
ABM-CNN (Shi, Zhao, and Wang 2021), Skip-Connected CNN (He et al. 2020) and 
LCNN-BFF Method (Shi, Wang, and Wang 2020), respectively.

The confusion matrix for the proposed method on a 20% NWPU dataset is 
shown in Figure 9. As you can see from Figure 9, ‘palace’ and ‘church’ have the 
lowest classification accuracy, 88% and 89%, respectively. Except for the two 
scenes of ‘palace’ and ‘church’, all the other scenes are classified with more than 
90% accuracy.

4.4. Model complexity analysis

To further prove the efficiency of the proposed method, seven advanced methods such as 
LCNN-BFF (Shi, Wang, and Wang 2020), GoogLeNet (Xia et al. 2017), CaffeNet (Xia et al.  
2017), VGG-VD-16 (Xia et al. 2017), Fine-tune MobileNetV2 (Zhang, Tang, and Zhao 2019), 
SE-MDPMNet (Zhang, Zhang, and Wang 2019) and Contourlet CNN (Liu et al. 2018) were 
selected for model complexity comparison. A comparative experiment was conducted on 
a 50% training scale AID dataset. Parameters and Floating point operations (FLOPs) were 
selected to measure the complexity of the model. The experimental results are shown in 
Table 7. Table 7 shows that the proposed method has the highest classification accuracy 
on AID datasets. Although the number of parameters is slightly higher than Fine-tune 
MobileNetV2 (Zhang, Zhang, and Wang 2019), the FLOPs value of the proposed method is 
313.2 M lower and the classification accuracy is 2.94% higher than that of the method. The 
proposed method achieves a good trade-off between classification accuracy and model 
complexity.

Figure 9. Confusion matrix of the proposed method on a training scale of 50% AID dataset.
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4.5. Model speed comparison

Usually, Average training time (ATT) is used to measure the average time required for 
a model to train a picture. Select Siamese ResNet_50 (Liu et al. 2019), Siamese AlexNet (Li 
et al. 2019), Siamese VGG-16 (Liu et al. 2019), LCNN-BFF (Shi, Wang, and Wang 2020), 
Gated Bidirectional+global feature method (Sun et al. 2020) and Gated Bidirectional 
Method (Sun et al. 2020) are compared experimentally. The results of the comparison 
are shown in Table 8. As you can see from Table 8, the ATT value of the proposed method 
is 0.015 s, 0.014 s less than LCNN-BFF (Shi, Wang, and Wang 2020), and 0.024 s less than 
the Siamese VGG-16 (Liu et al. 2019) method. The efficiency of the proposed method is 
further verified.

5. Discussions

In order to further discuss the performance of the proposed method, in this section, 
various visualization results of the proposed method are provided. Firstly, the t-distrib
uted stochastic neighbour embedding (T-SNE) (Maaten et al. 2008) method is adopted, 
which is a visualization method for dimension reduction proposed by Laurens van der 
Maaten and Geoffrey Hinton in 2008. The T-SNE visualization method considers both the 
local and global relationships of the data, which can give the validity of a method from the 
perspective of visualization. The visualization results of the proposed methods using 
T-SNE on the SIRI-WHU and UC datasets are shown in Figure 10. From Figure 10, we can 
see that on both datasets, this method reduces the distance within the same semantic 

Table 8. ATT comparison of the proposed model on 
UC dataset with advanced methods.

Method ATT(s)

Siamese ResNet_50 0.053
Siamese AlexNet 0.028
Siamese VGG-16 0.039
LCNN-BFF 0.029
Gated Bidirectional+global feature Method 0.052
Gated Bidirectional Method 0.048
Proposed 0.015

Table 7. Comparing the complexity of LCNN-JF and advanced meth
ods on 50% AID dataset.

Method OA Parameter FLOPs

LCNN-BFF 94.64 6.1M 24.6M
GoogLeNet 85.84 7M 1.5G
CaffeNet 88.25 60.97M 715M
VGG-VD-16 87.18 138M 15.5G
Fine-tune MobileNetV2 94.71 3.5M 334M
SE-MDPMNet 92.64 5.17M 3.27G
Contourlet CNN 95.54 12.6M 2.1G
Proposed 97.65 5M 20.8M
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clusters, reduces confusion between different semantic clusters, and effectively improves 
the classification accuracy on the two datasets.

Then, gradient weighted class activation map (GradCAM) is utilized to visually discuss 
some scenes of UC dataset. Grad-CAM is avisualization method proposed by Selvaraju 
et al. (Selvaraju et al. 2017),which is used to locate the category-related areas in an image, 
and to show thelevel of interest in the related areas by the colour depth. The visualiza
tionresults are shown in Figure 11.  From Figure 11, we can see that the proposed method 
pays much more attention to thescene labels of the input image than to the object labels, 
which improves the  classification performance of remote sensingscene images.

Finally, the UC dataset is randomly predicted by theproposed method, and the results 
are shown in Figure 12. From Figure 12, it canbe seen that the confidence of the proposed 

Figure 10. T-SNE visualization results diagram. (a). T-SNE visualization results on the SIRI-WHU dataset. 
(b). T-SNE visualization results on UC datasets.

INTERNATIONAL JOURNAL OF REMOTE SENSING 6635



Figure 11. The visualization results on UC dataset by Grad CAM.

Figure 12. Randomly predicted results on the UC dataset.
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method for random prediction of allscenarios is more than 99%, and some scenarios are 
even 100%, which furtherproves the validity of the proposed method.

6. Conclusions

This paper presents a multi-scale global feature extraction module, which combines 
global features of multiple scales through global pooling and sub-region pooling opera
tions, effectively improving the characterization ability of features. In addition, based on 
the global feature extraction module, a joint feature extraction module is proposed. The 
module consists of three branches. Branch 1 being 3 × 3 convolution is utilized to extract 
local features. Branch 2 is a global feature extraction module. To reduce the loss of 
information during the feature extraction process, an identity branch is adopted to 
compensate for the features, and the three branches are fused. Then, a lightweight 
modular convolution neural network is constructed using the joint feature extraction 
module for remote sensing scene image classification, and a series of experiments prove 
the superiority of this method. Although the proposed method has achieved good 
classification results, some scenes that difficult to be distinguished in the dataset (such 
as ‘palace’ and ‘church’ scenes in NWPU dataset) should be further recognized. The next 
step is to find a method to identify these scenes more accurately and further improve the 
classification performance of remote sensing scene images.
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